

Perdas de calor em Sistemas Prediais de água quente: Análise energética de materiais para tubulações

Bruna Farah¹

Laís Aparecida Ywashima²

Armando Traini Ferreira³

Resumo: Um dos grandes desafios para os projetos de Engenharia é a redução dos impactos por eles gerados e, no caso dos Sistemas Prediais, principalmente durante o uso e a operação. Assim, a melhor compreensão sobre o processo de perda de calor é fundamental para a melhoria da eficiência do sistema como um todo. O objetivo deste trabalho é apresentar como se dão as perdas de calor em sistemas prediais de água quente, em regime permanente e equilíbrio térmico, e avaliar o desempenho energético na utilização de tubulações de diferentes materiais (CPVC, PPR e cobre) e isolante térmico em espuma elastomérica. Constatou-se, a partir um modelo para a transmissão de calor, que a perda de calor em tubulações de água quente pode ser estimada em função de: diâmetro externo e interno da tubulações de água quente pode transmissão de calor do ar circundante, condutividade térmica da tubulação e da temperatura ambiente e interna do tubo. Foi constatado que, para os diâmetros comerciais analisados, as tubulações de PPR PN20 (DN 25) e cobre (DN 22) apresentaram perfis de decaimento de temperatura associada ao fluxo de água similares.

Palavras-chave: sistema predial de água quente; perda de calor; isolante térmico.

Heat losses in hot water building systems: Energy and economic analysis of piping materials

Abstract: One of the major challenges for Engineering projects is the reduction of impacts generated by them and, in Building Systems, mainly in use and operation. Thus, a better understanding of heat losses is crucial to improve the efficiency of the system as a whole. The objective of this work is to present how heat losses occur in hot water systems, in steady state and thermal equilibrium, and to evaluate the energy performance in the use of pipes made of different materials (CPVC, PPR and copper) and thermal insulator in elastomeric foam. Based on a model for heat transmission, it was found that heat loss in hot water pipes can be estimated as a function of: external and internal diameter of the pipe, surface heat transmission coefficient

¹ Engenheiro Civil, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, bruna.farah@aluno.ifsp.edu.br

² Mestre, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, lais@ifsp.edu.br

³ Doutor, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, traini@ifsp.edu.br.

from the surrounding air, the pipe's thermal conductivity and the ambient and internal temperature of the pipe. It was found that, for the analyzed commercial diameters, the PPR and copper pipes presented similar temperature decay profiles associated with the water flow.

Key-words: domestic hot water system; heat losses; thermal insulator.

Introdução

Um dos grandes desafios para os projetos de Engenharia é a redução dos impactos por eles gerados e, no caso dos Sistemas Prediais, principalmente durante o uso e a operação.

As instalações prediais de água quente devem ser projetadas e executadas de forma que, durante a vida útil do edifício, garantam o fornecimento de água de forma contínua, em quantidade suficiente e temperatura controlável, com segurança, pressões e velocidades compatíveis com o funcionamento dos aparelhos sanitários e das tubulações, proporcionando o nível de conforto adequado aos usuários. O projeto do sistema predial de água quente deve ser feito de modo a racionalizar o consumo de energia, através da correta escolha do sistema de aquecimento e dimensionamento (ABNT, 2020).

Tanto por convecção, quanto por radiação e condução, o sistema predial de água quente transmite calor ao seu entorno, que se encontra normalmente à temperatura mais baixa. Em redes de distribuição extensas ou na ausência de movimentação de água quente no interior das tubulações, pode acontecer uma queda na temperatura da água a um nível que se torne incompatível com o desempenho esperado do sistema. O tempo necessário para que a água quente chegue no ponto de consumo devido à necessidade de deslocamento da água fria parada no trecho montante é conhecido como tempo de espera e é determinante para o desperdício de água fria, para o maior consumo de energia e para o desconforto do usuário devido à demora de abastecimento do ponto de utilização (ILHA; GONÇALVES; KAVASSAKI, 1994). Assim, a melhor compreensão de como se dão as perdas de calor é fundamental para a melhoria da eficiência do sistema como um todo.

Os materiais frequentemente empregados para o transporte de água quente em edificações são: CPVC (Policloreto Vinílico Clorado), PPR (Polipropileno Copolímero

Random) e cobre. Destaca-se que o isolamento das tubulações de materiais plásticos, segundo fabricantes, não é obrigatório, sendo recomendado somente para grandes extensões. Por exemplo, o Grupo Tigre S.A (2020) apresenta que o isolamento só é recomendado em suas linhas de tubos em CPVC em comprimentos maiores que 20 metros, e a Amanco Brasil LTDA (2016) informa que nas linhas em PPR PN20 (DN 25) o isolamento é necessário a partir dos 14,9 metros para água a 70 graus Celsius. Entretanto, a condutividade térmica exigida para amenizar as perdas de calor não é atingida por esses materiais plásticos, que possuem menor desempenho em relação ao cobre revestido (REDAÇÃO AECWEB; E-CONSTRUMARKET, 2018).

Além disso, o percurso entre o ponto de disponibilidade até o ponto de utilização mais distante pode apresentar trechos em que a tubulação esteja em contato com diferentes elementos com propriedades físicas e temperaturas variáveis, como a alvenaria, forros de gesso, o interior de dutos verticais (*shafts*), entre outros. As perdas térmicas são definidas pela troca de calor entre a água e os meios que a envolvem, o que inclui a capacidade de transmitir calor apresentada por cada elemento. Com isso, o estudo de todo o sistema é fundamental no momento de especificar qual o tipo de isolamento térmico mais recomendado (REDAÇÃO AECWEB; E-CONSTRUMARKET, 2018).

Dessa forma, o objetivo deste trabalho é a melhor compreensão de como o calor é perdido nas tubulações de água quente, a partir do estudo do processo das perdas de calor em tubulações do sistema predial de água quente, para posterior avaliação energética dos principais materiais empregados em projeto residencial unifamiliar.

Materiais e métodos

Neste trabalho, foram abordados os métodos tradicionais para cálculo de transferência de calor em superfícies cilíndricas presentes na literatura, em regime permanente e em equilíbrio térmico.

Considerando a transferência de calor unidimensional em regime permanente por um condutor cilíndrico com isolante térmico, que ocorre na direção radial de um conjunto de duas

cascas cilíndricas concêntricas, são identificadas quatro posições geométricas (ou quatro seções) e, portanto, quatro processos distintos de transferência de calor ligados em série (COELHO, 2016). São eles: convecção forçada entre o fluido e a parede interna da tubulação, condução entre a parede interna do tubo e a parede interna do isolamento térmico, condução entre a parede interna e a externa do isolamento térmico e, por fim, convecção natural entre a parede externa do isolamento e o ambiente que o circunda.

Pode-se, utilizando o conceito de resistência térmica, avaliar a taxa de calor entre os fluidos que escoam internamente e externamente (com temperaturas $T_{1\infty}$ e $T_{2\infty}$, respectivamente) pela Eq. 1.

$$\dot{Q} = \frac{\Delta T}{R_{eq}} = \frac{T_{1\infty} - T_{2\infty}}{R_1 + R_2 + R_3 + R_4} = \frac{T_{1\infty} - T_{2\infty}}{\frac{1}{2\pi r_1 h_1 L} + \frac{\ln(r_2/r_1)}{2\pi L k_1} + \frac{\ln(r_3/r_2)}{2\pi L k_2} + \frac{1}{2\pi r_3 h_3 L}}$$
(1)

Onde L é o comprimento do conjunto de cascas cilíndricas, e as dimensões características são identificadas na Figura 1.

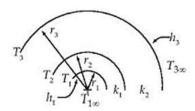


Figura 1. Cascas cilíndricas concêntricas (Fonte: Coelho, 2016)

Em que:

- a) $T_{1\infty}$ é a temperatura do fluido interno (água) [°C];
- b) T₁ é a temperatura da parede interna da tubulação [°C];
- c) T_2 é a temperatura da parede externa da tubulação e da parede interna do isolamento térmico [°C];
 - d) T₃ é a temperatura da parede externa do isolamento térmico [°C];
 - e) $T_{3\infty}$ é a temperatura do fluido externo (ar) [°C];
- f) h_1 é o coeficiente médio de transferência de calor por convecção do fluido interno (água) [W.(m⁻².K⁻¹];

Volume 8 - n. 1 - 2025 http://periodicos.unesc.net/engcivil

- g) h_3 é o coeficiente médio de transferência de calor por convecção do fluido externo (ar) [W.m⁻².K⁻¹)];
 - h) k₁ é a condutividade térmica da tubulação [W.m⁻¹.K⁻¹];
 - i) k₂ é a condutividade térmica do isolamento térmico [W.m⁻¹.K⁻¹];
 - j) r₁ é o raio interno da tubulação [mm];
 - k) r₂ é o raio externo da tubulação e o raio interno do isolamento térmico [mm];
 - 1) r₃ é o raio externo do isolamento térmico [mm].

Neste estudo, foi desenvolvido um modelo físico-matemático para o decaimento da temperatura ao longo de uma tubulação de água quente associado ao escoamento do fluido dentro do tubo a partir das equações de transferência de calor encontradas na literatura (COELHO, 2016), considerando regime permanente e o equilíbrio térmico.

Supondo o modelo cilíndrico descrito na Figura 1 por onde escorre uma vazão mássica \dot{m} e escrevendo a equação de balanço de energia para o volume de controle descrito por uma fração dx do comprimento do tubo, conforme mostra a Figura 2, tem-se a Eq. 2.

$$\dot{m}C_P T_f = dQ + \dot{m}C_P (T_f + dT_f) \tag{2}$$

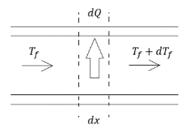


Figura 2. Decaimento da temperatura no fluido em movimento.

Em que:

- a) C_P é o calor específico sensível do fluido [kJ. kg⁻¹.K⁻¹)];
- b) T_f é a temperatura do fluido inicial [°C];
- c) dT_f é a variação da temperatura do fluido no volume de controle [°C];
- d) dQ é o calor cedido no volume de controle [W].

Considerando, ainda, que o calor é cedido pelos processos de convecção forçada, condução e convecção natural já descritos na Eq. 1, obtém-se a Eq. 3:

$$\dot{m}C_{P}\frac{dT_{f}}{dx} + \frac{1}{\frac{1}{h_{1}D_{1}} + \frac{\ln(D_{2}/D_{1})}{2k_{1}} + \frac{\ln(D_{3}/D_{2})}{2k_{2}} + \frac{1}{h_{2}D_{3}}}(T_{f})$$

$$-T_{\infty}) = 0$$
(3)

Onde T_{∞} é a temperatura do ambiente externo à tubulação [°C].

Para ter-se uma ordem de grandeza da queda de temperatura em um modelo aplicável, considerou-se uma residência com sistema de aquecimento central (em que a temperatura da água aquecida é 70°C) que alimenta dois lavatórios, dois chuveiros e uma pia de cozinha de uso não simultâneo dos equipamentos. Assim, a soma dos pesos dos equipamentos é 2,1, o que resulta em uma vazão de, aproximadamente, 0,43 Ls⁻¹. Para determinação do diâmetro da tubulação, utilizou-se a Eq. 4 (COELHO, 2016).

$$D_{min} = 20.6\sqrt{Q} \tag{4}$$

Em que:

- a) D_{mín} é o diâmetro interno mínimo [mm];
- b) Q é a vazão [L.s⁻¹].

Dessa forma, como o diâmetro mínimo calculado é igual a 13,6 milímetros, adotou-se um diâmetro interno de 18 milímetros. As tubulações de CPVC e PPR (DN 22 e DN 25, respectivamente) possuem diâmetro interno de 18 milímetros. Somente a tubulação de cobre que foge a esse padrão comercial, sendo que o diâmetro mais próximo a esse valor equivale a 21 milímetros (DN 22).

Resultados e discussões

De posse do equacionamento necessário para o cálculo do decaimento da temperatura ao longo da tubulação, foram estipuladas para análise tubulações de CPVC, PPR e cobre com e sem a aplicação de uma camada de 10 milímetros de isolante térmico em espuma elastomérica, que possui uma condutividade térmica de 0,036 W.m⁻¹.K⁻¹. Com o objetivo de entender como

a água perde calor ao longo das tubulações, a análise se deu em até 40 metros de tubulação. A atenção maior é dada aos 20 metros de tubulação, comprimento que, segundo os principais fabricantes de CPVC e PPR, se ultrapassado, requer a aplicação de isolamento térmico. A Tabela 1 identifica as propriedades das tubulações analisadas.

Tabela 1. Propriedades das tubulações

Propriedade	CPVC	PPR	Cobre
Condutividade Térmica (Wm ⁻¹ .K ⁻¹))	0,14	0,24	340
Diâmetro Nominal (mm)	22	25	22
Diâmetro Externo (mm)	22	25	22
Diâmetro Interno (mm)	18	18	21

Fonte: Grupo Tigre S.A, 2020; Amanco Brasil Ltda., 2016; Paranapanema S.A, 2018).

Por motivo de simplificação no equacionamento, foram consideradas, para o cálculo de todas as propriedades físicas, a média entre as temperaturas do ambiente e a do fluido aquecido.

O decaimento da temperatura ao longo das tubulações está representado na Figura 3.

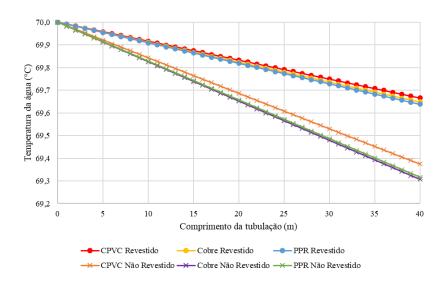


Figura 3. Decaimento da temperatura.

Observa-se, a princípio, que o decaimento das temperaturas segue um comportamento aproximadamente linear ao longo da tubulação. A não linearidade, entretanto, existe devido à consideração de que as propriedades termo físicas variam com a temperatura. A maior queda

se deu na tubulação em cobre não revestido, que variou em 40 metros cerca de 0,69°C, o que corresponde a um decaimento de 1,0% na temperatura. O material que menos perdeu calor, por outro lado, foi o CPVC revestido, que variou em 40 metros cerca de 0,33 °C, o que corresponde a um decaimento de 0,5%.

Outro ponto a se destacar é a similaridade entre os perfis de decaimento de temperatura do cobre e do PPR, sejam revestidos ou não, apesar de terem condutividades térmicas díspares entre si. Este fato, portanto, deve ser analisado sob a ótica dos processos de convecção. As resistências térmicas à convecção dependem diretamente da superfície de contato, seja com a água em movimento dentro da tubulação (convecção forçada) ou com o ar circundante (convecção natural).

A perda associada ao fluxo de massa dentro da tubulação leva em consideração o coeficiente convectivo da água corrente. Este, por sua vez, é calculado a partir dos adimensionais de Reynolds, Prandtl e Nusselt, que dependem diretamente do diâmetro interno da tubulação (COELHO, 2016). Na tubulação em cobre, o diâmetro interno é de 21 milímetros, enquanto na de PPR é de 18 milímetros. Esta diferença, apesar de pequena, reflete nos valores de h₁ na Eq. 3, que é menor na tubulação de cobre. A Figura 4 mostra os perfis de resistências à convecção forçada (denominada R1) das diferentes tubulações. Em suma, o cobre, por possuir maior superfície de contato interna, apresenta resistência convectiva maior, ou seja, resiste melhor à perda de calor decorrente do fluxo de água dentro da tubulação.

Similarmente, o coeficiente convectivo do ar que circunda a tubulação, calculado a partir dos adimensionais de Prandtl, Rayleigh e Nusselt, depende do diâmetro externo da tubulação (COELHO, 2016). A tubulação em PPR tem, por característica, maior espessura, o que garante um diâmetro externo de 25 milímetros, enquanto no cobre o diâmetro externo é de 22 milímetros. Esta diferença, apesar de pequena, reflete nos valores de h₂ na Eq. 3, que é menor na tubulação de PPR. As Figuras 5 e 6 mostram os perfis de resistências à convecção natural (denominada R4) das diferentes tubulações. Em suma, o PPR, por possuir maior superfície de contato externa, apresenta resistência convectiva menor, ou seja, tem mais facilidade de perder calor por convecção natural.

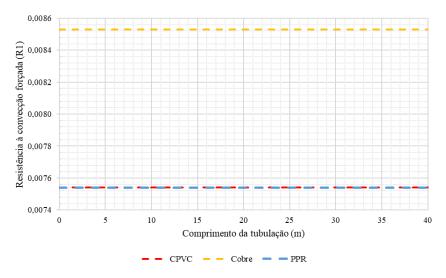


Figura 4. Resistências à convecção forçada - R1

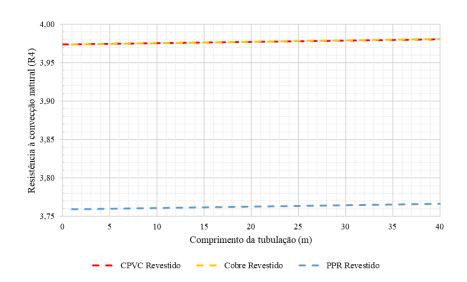


Figura 5. Resistências à convecção natural - R4 - Tubulações revestidas

Das Figuras apresentadas, nota-se um padrão onde as resistências convectivas (sejam forçada ou natural) são sempre maiores para o cobre e menores para o PPR, devido às geometrias comerciais adotadas. O CPVC, por sua vez, ora se assemelha ao PPR (na resistência à convecção forçada, por compartilhar do mesmo diâmetro interno) e ora ao cobre (na resistência à convecção natural, por compartilhar do mesmo diâmetro externo).

As Tabelas 2 e 3 identificam a diferença entre as temperaturas da água nas tubulações isoladas e não isoladas ao atingir os 20 e 40 metros de comprimento, respectivamente. Nota-se que a diferença maior se dá na tubulação de cobre que, quando isolada, apresenta uma diferença de 0,17 °C em relação à não isolada.

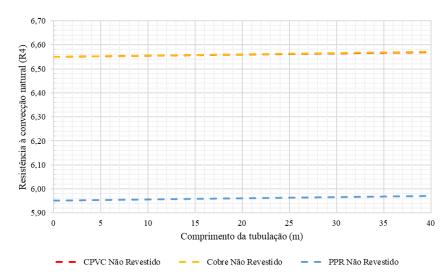


Figura 6. Resistências à convecção natural - R4 - Tubulações não revestidas.

Tabela 2. Temperaturas atingidas aos 20 metros de tubulação

Material	Tnão isolada (°C)	Tisolada (°C)	ΔT (°C)	ΔT (%)
Cobre	69,65	69,82	0,17	0,25%
PPR	69,66	69,82	0,16	0,23%
CPVC	69,69	69,83	0,15	0,21%

Tabela 3. Temperaturas atingidas aos 40 metros de tubulação

Material	Tnão isolada (°C)	Tisolada (°C)	ΔT (°C)	ΔT (%)
Cobre	69,31	69,65	0,34	0,49%
PPR	69,32	69,64	0,32	0,46%
CPVC	69,37	69,67	0,29	0,42%

Outro ponto a ser considerado é que o aumento da espessura isolante de paredes cilíndricas de pequenos diâmetros nem sempre leva a uma redução da transferência de calor, podendo até mesmo vir a aumentá-la (QUITES; LIA, 2021).

Considerando a Eq. 5 de taxa de calor por condução, e que r₁ seja o raio interno e r₂ seja o raio externo do isolamento, ao traçar um gráfico da taxa de calor em função de r₂, verifica-se que a função observada passa por um máximo, como mostra a Figura 7 (COELHO, 2016).

$$\dot{Q} = \frac{T_1 - T_2}{\frac{\ln(r_2/r_1)}{2\pi I k}} \tag{5}$$

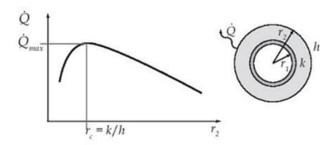


Figura 7. Raio crítico de isolamento (Fonte: Coelho, 2021)

Em que:

- a) \dot{Q} é a taxa temporal na qual o calor é transferido [W];
- b) r₁ é o raio interno da tubulação [mm];
- c) r₂ é o raio externo do isolamento térmico [mm];
- d) r_c é o raio crítico [mm];
- e) k é a condutividade térmica do isolamento térmico [W.m⁻¹.°C⁻¹];
- f) h é o coeficiente médio de transferência de calor por convecção do fluido externo (ar) $[W.m^{-1}.^{\circ}C^{-1}]$.

O valor do raio para o qual a taxa de calor é máxima é denominado raio crítico. O valor do raio crítico, r_c , pode ser avaliado impondo que a derivada da taxa de calor em relação à r_2 é nula (COELHO, 2016). Obtém-se, assim, a Eq. 6:

$$r_c = k/h \tag{6}$$

As Figuras 8 a 10 apresentam o fluxo de calor em função do raio externo das tubulações sem isolamento em CPVC, PPR e cobre, respectivamente. Estão destacados em vermelho os pontos máximos da função, ou seja, os raios externos para os quais as tubulações permitem o maior fluxo de calor.

Por possuir perfil parabólico, a função estabelece dois limites diferentes para análise da espessura das tubulações. Tem-se que:

- a) Para raios internos superiores ao raio crítico característico da tubulação (R₁>R_c): qualquer espessura de tubo contribuiria para isolar o sistema e minimizar as trocas de calor;
- b) Para raios internos inferiores ao raio crítico característico da tubulação (R₁<R_c): o incremento na espessura aumenta a transferência de calor até certo ponto, antes de começar a, de fato, atuar como isolante.

A tubulação em CPVC, representada no Gráfico 5, possui um raio crítico de 20 milímetros. O raio externo adotado, de 11 milímetros, garante uma transferência de calor 13% menor que a máxima que ocorreria no raio crítico (de 21,62 W.m frente à máxima de 24,34 W.m).

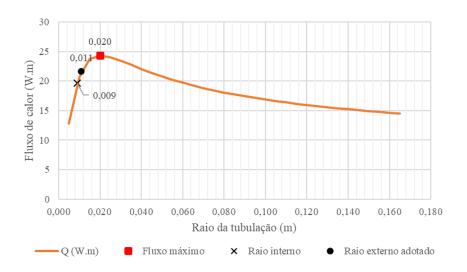


Figura 8. Raio crítico CPVC.

A tubulação em PPR, representada na Figura 9, possui um raio crítico de 35 milímetros. O raio externo adotado, de 12,5 milímetros, garante uma transferência de calor 34% menor que a máxima que ocorreria no raio crítico (de 23,67 W.m frente à máxima de 31,70 W.m).

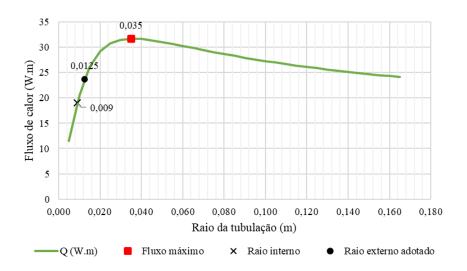


Figura 9. Raio crítico PPR.

A tubulação em cobre, representada na Figura 10, possui um raio crítico de 48 metros. O raio externo adotado, de 11 milímetros, garante uma transferência de calor 46.044% menor que a máxima que ocorreria no raio crítico (de 23,98 W.m frente à máxima de 11.067,42 W.m). Por se tratar de um material muito condutor, fica mais evidente que o incremento de espessura, por si só, facilita a transferência de calor em qualquer circunstância.

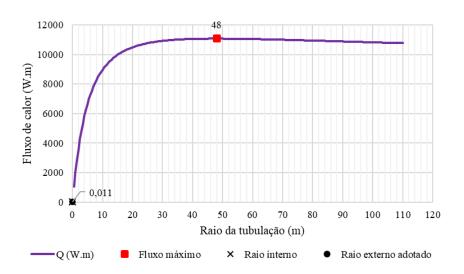


Figura 10. Raio crítico cobre.

Das tubulações plásticas analisadas, nota-se que o PPR possui um intervalo maior de espessuras possíveis inferiores ao raio crítico. Isto se deve à condutividade do material que supera a do CPVC. Por outro lado, o CPVC, por possuir raio crítico menor do que o PPR, se mostra uma opção mais econômica, pois o incremento de espessura é mais favorável ao CPVC a partir dos 20 milímetros, enquanto para o PPR somente após os 35 milímetros.

Conclusões

Apesar de os principais fabricantes de tubulações em materiais plásticos, como CPVC e PPR, aconselharem o uso de isolamento térmico em comprimentos superiores a 20 metros, constatou-se que a resistência térmica adquirida não se iguala à resistência associada a materiais isolantes e, portanto, o emprego de isolantes térmicos deve ser considerado avaliando não só o comprimento da tubulação, mas todas as variáveis de contorno do sistema.

Um ponto de destaque, e que se relaciona à análise das perdas de calor por convecção, está relacionado à geometria adotada. Foi constatado que, para os diâmetros comerciais analisados, as tubulações de PPR e cobre (DN 25 e DN 22, respectivamente) apresentaram similaridade entre os perfis de decaimento de temperatura associada ao fluxo de água. Este acontecimento, aparentemente pouco intuitivo, é determinante na escolha dos materiais, uma vez que se estabelece entre um metal (bom condutor térmico) e um plástico (mau condutor térmico).

Em sistemas que compreendem o escoamento de fluidos, a utilização de isolantes térmicos é essencial, uma vez que são menos condutivos que os materiais comumente empregados em tubulações. O aumento da espessura isolante de paredes cilíndricas de pequenos diâmetros, entretanto, nem sempre leva a uma redução da transferência de calor. Torna-se um aspecto importante no dimensionamento, portanto, a compreensão do raio crítico de isolamento, devendo ser o menor possível, tal que a aplicação da isolação resulte em redução da perda de calor.

Referências bibliográficas

AMANCO BRASIL LTDA. (org.). **Linha Amanco Super CPVC FlowGuard**. Joinville: Amanco Brasil LTDA, 2016. Disponível em: http://assets.production.amanco.com.br.s3.amazonaws.com/uploads/gallery_asset/filf/60/Man ual-CPVC-2016-FINALWEB.pdf. Acesso em: 04 jun. 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5626**: Sistemas prediais de água fria e água quente - Projeto, execução, operação e manutenção. Rio de Janeiro, 2020. 56p.

COELHO, J. **Energia e Fluidos – volume 3: Transferência de calor.** São Paulo: Blucher, 2016.

GRUPO TIGRE S.A. (org.). **Água Quente.** Joinville: Tigre S.A, 2020. Disponível em: https://tigrecombr-prod.s3.amazonaws.com/default/files/2021-05/tg-273-20_catalogo_agua_quente_2020-baixa.pdf. Acesso em: 04 jun. 2021.

ILHA, M. S. O.; GONÇALVES, O. M.; KAVASSAKI, Y. **Sistemas Prediais de Água Quente. Texto Técnico**. São Paulo: Escola Politécnica da USP. TT/PPC/009, 1994. 69p. Disponível em: http://www.pcc.usp.br/files/text/publications/TT_00009.pdf. Acesso em: 28 jun 2021.

PARANAPANEMA S. A. (org.). **Produtos de cobre: Construção Civil.** Dias d'Ávila: Paranapanema S.A., 2018. Disponível em: https://www.paranapanema.com.br/show.aspx?idCanal=Y+c3XmHkO1KwIBZ4CCrSCC==. Acesso em: 04 jun. 2021.

QUITES, E.; LIA, L. **Introdução à transferência de calor.** Apostila. Disponível em: http://www.portaldoeletrodomestico.com.br/redesocial/wp-content/uploads/group-documents/11/1323531498-APOSTILA-TRANSFERRENCIA-DE-CALOR.pdf. Acesso em: 11 ago. 2021.

REDAÇÃO AECWEB; E-CONSTRUMARKET (org.). **Como escolher o isolamento térmico para as tubulações de água quente.** 2018. Disponível em: https://www.aecweb.com.br/revista/materias/como-escolher-o-isolamento-termico-para-astubulacoes-de-agua-quente/16832. Acesso em: 16 jun. 2021.