

Estudo do Comportamento do Concreto com Resíduo Têxtil em Poliéster

Carine Cardoso dos Santos ¹,

Jenifer Mayara Pless ²,

Patricia Bedin Borba³

Resumo: Segundo Associação Brasileira da Indústria Têxtil, o mundo comercializa aproximadamente 80 bilhões de peças novas por ano, sendo que o Brasil, foi responsável pela produção de 2,16 milhões de toneladas de produtos têxtil em 2021, tornando-se o 5° maior produtor de vestuário global. Diante ao elevado número de produção têxtil, é evidente a preocupação com a quantidade de resíduos oriundo da produção e comercialização ocasionando impactos negativos no meio ambiente. O objetivo desta pesquisa foi analisar as propriedades físicas e mecânicas da incorporação do resíduo têxtil, poliéster, com o concreto. Para isso, é realizado ensaio de granulometria, massa específica e unitária, determinação de teor de material pulverulento do agregado, determinação de abatimento do concreto (slump test) e corpo de prova com 0%, 2,5% e 5% de resíduo têxtil mais aditivo superplastificante ADVA CAST 525 curados e ensaiados a compressão de acordo com as normas brasileiras vigentes. Observa-se que com a inserção do resíduo no concreto, houve uma redução de 59% e 87% para 2,5% e 5% de resíduo, respectivamente da sua resistência a compressão o tornando para função não estrutural, no entanto a necessidade de controle tecnológico para sua utilização. E para tornar seu uso estrutural e sustentável há necessidade de aprofundamento das pesquisas técnicas, sociais e econômicas.

Palavras-chave: Concreto. Poliéster. Resíduo têxtil. Concreto sustentável.

Study of the Behavior of Concrete with Polyester Textile Waste

Abstract: According to the Brazilian Textile Industry Association, the world sells approximately 80 billion new pieces per year, with Brazil being responsible for the production of 2.16 million tons of textile products in 2021, becoming the 5th largest clothing producer global. Given the high number of textile production, there is an obvious concern about the amount of waste arising from production and commercialization, causing negative impacts on

¹ Doutora, Centro Universitário Católica de Santa Catarina, carine.santos@catolicasc.org.br.

² Engenheira Civil, Centro Universitário Católica de Santa Catarina, jenifer.pless@catolicasc.edu.br.

³ Engenheira Civil, Centro Universitário Católica de Santa Catarina, patrícia.borba@catolicasc.edu.br.

the environment. The objective of this research was to analyze the physical and mechanical properties of incorporating discarded textile, polyester, with concrete. For this purpose, granulometry, specific and unit mass tests are carried out, determination of powdery material content of the aggregate, determination of concrete slump test and specimen with 0%, 2.5% and 5% of textile declaration plus ADVA CAST 525 superplasticizer additive, cured and tested to specifications in accordance with current Brazilian standards. It should be noted that with the insertion of the exclusion in the concrete, there was a reduction of 59% and 87% to 2.5% and 5% exclusion, respectively of its resistance to variations, making it for a non-structural function, however the need for technological control for its use. And to make its use structural and sustainable, there is a need for in-depth technical, social and economic research.

Key-words: Concrete. Polyester. Textile waste. Sustainable concrete.

Introdução

O descarte inadequado dos tecidos sintéticos, sendo por meio de lixo comum ou em ambientes naturais, causa vários impactos negativos no meio ambiente. Um dos maiores problemas associados à decomposição dos tecidos sintéticos é a contaminação do solo e dos recursos hídricos. Conforme ocorre a degradação desses materiais, são liberadas pequenas partículas conhecidas como microplásticos, os quais são facilmente transportados pelo vento e pela água, contaminando rios, lagos, oceanos e afetando animais aquáticos, podendo chegar até mesmo aos seres humanos através da ingestão de alimentos contaminados (Caballero, 2022).

Paralelo a isso, o setor de construção civil está em constante busca e desenvolvimento de novas tecnologias para aprimorar as propriedades dos materiais de construção civil. O uso de resíduos têxteis sintéticos, como o poliéster ou *nylon*, como substituição parcial de agregados no concreto tem sido uma área de pesquisa que tem como objetivo promover mais sustentabilidade à construção civil, reduzindo o impacto ambiental associado ao descarte inadequado dos tecidos sintéticos, assim como diminuir a demanda por agregados naturais, como areia e pedra britada, cuja extração pode causar danos ao meio ambiente (Miashita, 2022).

Segundo o Serviço Brasileiro de Apoio às Micro e Pequenas Empresas (SEBRAE), anualmente, o Brasil gera 170 mil toneladas de resíduo têxtil, e apenas 20% desse volume é

processado para reciclagem e o restante, equivalente a 136 mil toneladas são descartados em locais como lixões e aterros (SEBRAE, 2022).

Os resíduos têxteis, são considerados sobras de tecidos provenientes do processo de fabricação de vestimentas, e roupas pós utilização (IFSC, 2023). Conforme o mesmo autor, "A maioria das composições dos tecidos de peças de vestuário está ligada ao poliéster ou a poliamida, que em linguagem popular, pode-se entender que se aproxima ou são plásticos".

O poliéster é uma fibra sintética obtida a partir do petróleo. É um tipo de tecido amplamente usado e possui diversas derivações. No entanto, o termo é frequentemente usado de forma intercambiável com politereftalato de etileno (PET), sendo tecnicamente um plástico. Uma das principais características distintivas do poliéster é sua termoplastia, o que implica que o material pode ser aquecido a altas temperaturas sem que suas propriedades químicas sejam comprometidas (Artelassê, 2022).

Com o contínuo crescimento do setor da construção civil, o concreto tem sido muito utilizado devido às suas notáveis propriedades de resistência. Dada a diversidade de tipologias desse material, ele assegura uma eficácia notável e desempenha um papel de suma importância no âmbito da construção civil, adaptando-se para desempenhar distintas funções de acordo com as exigências específicas apresentadas (Lima *et al.*, 2014).

Quanto à resistência à compressão, o concreto é classificado em dois grupos, de acordo com a sua resistência característica à compressão (fck), determinados a partir do ensaio de corpos de prova ·moldados de acordo com a ABNT NBR 5738:2015 e rompidos conforme a ABNT NBR 5739:2018.

O concreto com classe inferior a C20 é considerado concreto não estrutural, devendo ter seu desempenho atendido conforme ABNT NBR 6118 e ABNT NBR 12655 (ABNT NBR 8953: 2015).

O concreto não estrutural é utilizado quando não é necessário proporcionar resistência, como o concreto magro que se trata de uma peça sem finalidade estrutural apenas para prover uma superfície uniforme para a concretagem estrutural de fundações, além de impedir o contato

direto do concreto com o solo evitando patologias oriundas pelos agentes químicos presentes no solo, como sulfato. (Pereira, 2018; Tecnosil, sd).

O cimento Portland é amplamente reconhecido como o aglomerante mais comumente empregado na indústria da construção civil em todo o mundo. Este material consiste em um pó fino de coloração acinzentado, composto por silicatos e aluminatos de cálcio, com inúmeras propriedades e características. (Ribeiro et al., 2011).

Os agregados destinados à construção civil consistem em materiais granulares, que não possuem uma forma ou volume definidos, mas que possuem dimensões e propriedades estabelecidas para sua utilização em obras de engenharia civil. Exemplos desses materiais incluem pedra britada, cascalho, areias naturais ou provenientes da moagem de rochas, assim como argilas. Além disso, também são considerados como agregados os resíduos inertes reciclados, escórias provenientes da indústria siderúrgica, produtos industriais, entre outros elementos. A disponibilidade de agregados é considerada abundante tanto no Brasil quanto globalmente (Rezende e Serna, 2017).

A água a ser utilizada no concreto deve ser limpa, sem presença de matéria orgânica, não pode estar poluída e nem ser proveniente de esgoto ou água do mar (ABNT NBR 15900, 2009).

Os aditivos e adições são produtos adicionados de maneira uniforme e homogênea ao concreto, com o propósito de modificar suas características físicas e/ou mecânicas, tanto no seu estado fresco, quanto endurecido, podendo ter sua trabalhabilidade, resistência, compacidade, entre outras propriedades, melhoradas, bem como permeabilidade, retração e absorção de água reduzidas (Bonafé, 2016).

O desenvolvimento da dosagem, é como uma arte de equilibrar inúmeros requisitos conflitantes, conforme Mehta "A dosagem do concreto é o processo de obtenção da combinação correta do cimento, agregado, água, adições e aditivos vivos para produzir o concreto de acordo com as especificações dadas" (Mehta, 2008).

O objetivo desta pesquisa foi analisar as propriedades físicas e mecânicas da incorporação do resíduo têxtil, poliéster, com o concreto.

Materiais e métodos

A fim de compreender e evitar erros durante o desenvolvimento, a Tabela 01, apresenta 5 estudos relacionados com o tema.

Tabela 01. Estudos realizados com adição de resíduo têxtil no concreto

Autores	Ano	Título	Formato do resíduo	Ensaios Realizados	Aplicação	Quantidade de Resíduo	Resistência (MPa)
Andrade, Machado, Assis, Pessoa, Carvalho	2015	Utilização de descarte de resíduos têxteis (poliamida/poliéster), como agregado em	Pó de tecido	Resistência à compressão	Adição do resíduo	0% 5% 15%	24,5 25,1 26,3
Machado	2015	concreto Utilização de descarte de resíduo têxtil	Pó de tecido	Abatimento do tronco do cone	Adição do resíduo	0% 5%	24,5 25,1
		(poliamida/poliéster), como agregado, em concreto		Resistência à compressão		15%	26,4
Dias, Arnold, Birck, Silva	2019	Concreto Reforçado com fibra de resíduo têxtil oriundo da produção de pneu	Tecido Desfiado	Abatimento do tronco do cone Resistência à compressão Resistência a tração Resistência ao impacto Análise ao microscópio óptico	Adição do resíduo	0	34,2
						2,7 kg/m³	34,8
						3,6 kg/m³	32,2
Reis, Bussular, Galvão, Santos, Assis	2019	Estudo da adição de resíduo de tecido em concreto	Retalhos de tecido	Resistência à compressão	Adição do resíduo	0% 1% 3% 5%	17,29 11,19 9,64 7,13
Miachita, Jabur, Ribeiro, Tessari	2020	Avaliação da capacidade de substituição parcial dos agregados graúdos por resíduos têxteis no concreto	Retalhos de tecido	Speedy Test	Substituiç ão parcial do agregado graúdo	1% 2%	6,52 7,08
				Resistência à compressão		3%	6,31

Estão apresentados os materiais utilizados, os ensaios de caracterização dos agregados e a metodologia de ensaios do concreto, conforme Figura 1.

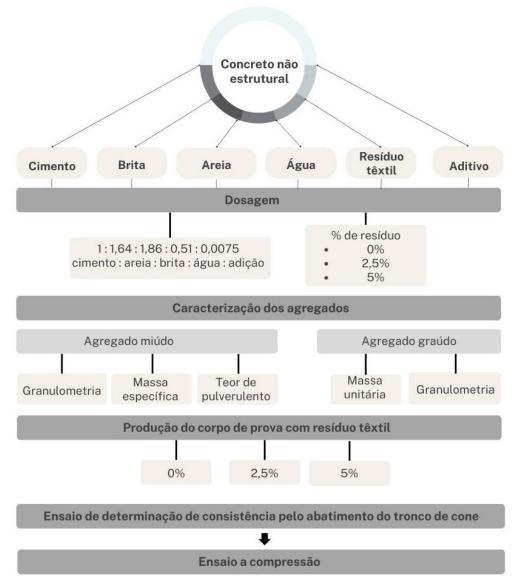


Figura 1. Fluxograma dos métodos realizados

Os métodos utilizados para caracterização dos materiais e do concreto foi baseada de acordo com as normas brasileiras, conforme Figura 2.

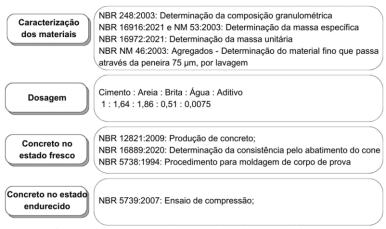


Figura 2. Normas regulamentadora dos materiais

Os materiais utilizados na produção do concreto: agregado miúdo, agregado graúdo, cimento Portland, água e aditivo.

O cimento escolhido para a elaboração do experimento foi o CP-V ARI Resistente a Sulfato (RS), do grupo "Votorantim cimentos", marca "Votoran", do tipo obras especiais (industrial – meios agressivos).

O aditivo aplicado a mistura foi ADVA CAST 525 da linha de produtos superplastificante da GCP, é um aditivo utilizado em uma gama de concreto fluído ou autoadensável, proporcionando enquanto concreto fresco, a diminuição do uso de água, aumenta e mantem a fluidez por período prolongado, favorece o adensamento e lançamento. Já para o concreto endurecido reduz retrações, aumenta a resistência, durabilidade e outros (GCP, sd). A dosagem utilizada foi de 0.75% em relação ao cimento, respeitando as recomendações do fabricante, que estipula um intervalo entre 0,4% a 2% em relação ao cimento (GCP, sd).

O resíduo têxtil utilizado foi o poliéster, um tecido sintético composto por fibras produzidas quimicamente por polímeros artificiais derivados do petróleo. No qual o mesmo foi cortado para simular o resíduo oriundo da máquina de costura Overlock, conforme Figura 3.

Figura 3. Amostra do resíduo têxtil em poliéster

O método de dosagem utilizado foi oriundo do artigo científico "Adição de resíduo têxtil em concreto não-estrutural" (Baruffi et al, 2021), além de outros acadêmicos da mesma instituição.

Sendo assim, a relação cimento: areia : brita : água : aditivo, conforme a seguir:

1: 1,64: 1,86: 0,51: 0,0075

Cabe ressaltar que a dosagem utilizada de resíduo têxtil foi de 0%, 2,5% e 5% em relação à quantidade de areia, resultando em 3 dosagens de concreto.

De acordo com a ABNT NBR 12821:2015, foi utilizado 0,70% de aditivo misturado com a água adicionado junto ao agregado miúdo. Já para a adição, o resíduo têxtil foi incorporado à massa juntamente com o agregado miúdo.

Com o concreto já produzido e os moldes foram devidamente preparados respeitando as especificações da NBR 5738 (2015). Após 24 horas da produção dos corpos de prova, os mesmos foram retirados dos moldes e imersos em água para o processo de cura, o qual se estendeu até o momento da realização do ensaio de compressão.

O ensaio de abatimento por tronco de cone (*Slump test*), também referido como ensaio de Consistência ou ensaio de Abatimento, é empregado para avaliar a fluidez do concreto. Para

concretos simples, de acordo com a norma NBR 16889:2020, esse ensaio deve ser conduzido pelo método do tronco de cone.

Segundo Fusco (2012), é fundamental avaliar a capacidade do concreto de resistir à compressão em estruturas sujeitas a cargas tanto normais quanto tangenciais para garantir a segurança.

A NBR 5739:2018 prescreve o método pelo qual devem ser ensaiados à compressão os corpos-de-prova, cilíndricos de concreto moldados conforme os procedimentos da norma NBR 5738 (2015).

Portanto, o corpo de prova teve suas faces limpas e secas, foi posicionado e centralizado com a parte inferior do prato da máquina de ensaio, para que o carregamento a ser aplicado em seu eixo seja feito até apresentar sinal de ruptura. O manuseio da máquina e todo procedimento foi operado pelo laboratorista da instituição de ensino Católica de Santa Catarina, em Jaraguá do Sul.

O ensaio de compressão axial foi realizado aos 7 e 28 dias de idade, para cada dosagem de concreto.

Resultados e discussões

A massa unitária do agregado graúdo equivalente a brita 0, foi calculada em relação ao recipiente com dimensões 18cm x 18cm x 14,4cm (comprimento x largura x altura) com volume de 4.665,6cm³, sendo a variação de massa de 1,319 a 1,349 g/cm. Portanto, a massa unitária aparente do agregado foi de 1,337g/cm³.

A massa específica do agregado miúdo, sendo a areia média, foi calculada a partir da execução do ensaio conforme NBR, resultando em uma massa específica de 2,597 g/cm³.

O teor de material pulverulento foi realizado a partir da execução do ensaio conforme descrito na NBR, resultando em um teor de 2,7%.

A composição granulométrica do agregado miúdo resultou no módulo de finura de 2,43mm, classificando-a como areia média com diâmetro máximo de 4,75mm.

O gráfico da Figura 4 é plotado pela proporção das aberturas das peneiras (eixo x), pela porcentagem retirada acumulada das mesmas (eixo y). Com este, o agregado ensaiado, enquadra-se na zona ótima e utilizável, além de sua curva ser similar ao recomendado.

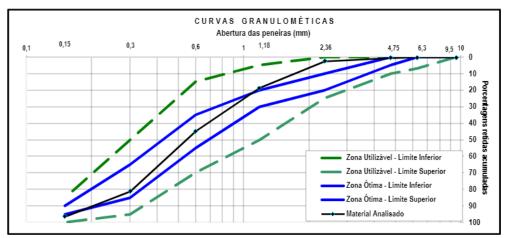


Figura 4. Gráfico da curva granulométrica do agregado miúdo

A composição granulométrica do agregado graúdo resulta no módulo de finura de 4,58mm, classificando-a como brita zero conforme Figura 05 apresenta-se com diâmetro máximo de 9,5mm.

O gráfico da Figura 5 é plotado pela proporção das aberturas das peneiras (eixo x), pela porcentagem retirada acumulada das mesmas (eixo y). Com este, o agregado ensaiado, apresenta comportamento similar a classificação brita 0.

Foi realizado ensaio de abatimento de tronco de cone (*slump test*), e obtiveram-se os resultados conforme resultado fotográfico como mostra na Figura 6. Portanto, de acordo com a NBR 8953:2015, a consistência do concreto para a dosagem 0%, 2,5% e 5% de resíduo, se classificam como S220 sendo utilizados para elementos estruturais esbeltos ou com alta densidade de armadura, S100 sendo aplicado em elementos estruturais com lançamento convencional respectivamente.

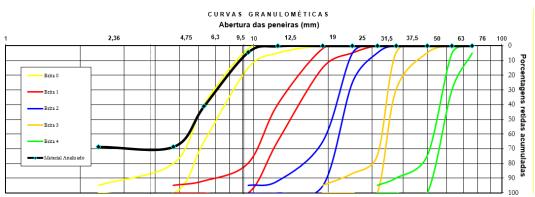


Figura 5. Gráfico da curva granulométrica do agregado graúdo.

Figura 6. Resultado fotográfico do abatimento de cone

O concreto moldado em corpos de provas (CP) cilíndrico foram submetidos ao ensaio de resistência a compressão axial após 7 e 28 dias da fabricação do concreto dosado em laboratório, resultando na resistência conforme Figura 07. Portanto, conforme resistência média, o concreto com dosagem 0%, 2,5% e 5% classificam-se aos 28 dias como C35, C10 e não utilizável, respectivamente.

Com o resultado dos CP com a dosagem de 2,5% e 5% submetidos ao ensaio e não alcançado fck mínimo de 20MPa, o concreto se caracteriza como não estrutural, no entanto, a dosagem com 5% não alcançou fck mínimo de 10MPa, o que o torna não utilizável.

O gráfico da Figura 7, é plotado pela porcentagem de resíduo no concreto (eixo x), pela resistência suportada aos 7 e 28 dias (eixo y). Com este, o CP de concreto com resíduo, apresenta comportamento inferior ao comportamento CP com concreto sem resíduo.

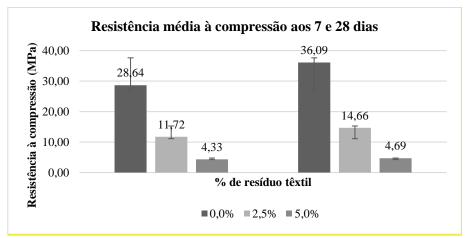


Figura 7. Resistência média à compressão aos 7 e 28 dias

Após a realização dos ensaios com os corpos de prova produzidos com o resíduo têxtil, pode-se concluir que o concreto apresentou baixa trabalhabilidade, e que as amostras não atingiram os requisitos para se tornar um concreto estrutural.

Desta forma, a substituição parcial do agregado miúdo por sobras de tecidos na mistura do concreto mostrou diminuição em sua resistência de 59% e 87% pelo aumento de vazios presentes e a falta de aderência do resíduo com o concreto. Por mais que, o *slump test*, de acordo com a NBR 8953:2015, era possível utilizar de forma estrutural à resistência a compressão mostrou o contrário.

Conclusões

Este trabalho teve como propósito promover o aproveitamento do resíduo têxtil na cadeia produtiva da construção civil como agregado no preparo do concreto. O resíduo utilizado foi o poliéster na proporção de 0%, 2,5% e 5% substituindo o agregado miúdo (areia média) na mistura do concreto dosado em 1:1,64:1,86:0,51:0,0075 (cimento: areia: brita: água: aditivo).

Dentro da caracterização dos agregados, constatou-se que o agregado miúdo está dentro da zona utilizável, enquanto o agregado graúdo se classificou em brita 0, com peso específico e unitário de 2,597g/cm³ e 1,337g/cm³, respectivamente. Cabe salientar que, 2,7% da composição do agregado miúdo trata-se de material pulverulento.

Logo, na avaliação do concreto em estado fresco, através do ensaio de abatimento de tronco (*slump test*), foi verificado que o concreto com a substituição do agregado miúdo por 2,5% e 5% apresentaram menor trabalhabilidade, classificando-os em S100 além disso, de acordo com a tabela 2, adaptada da ABNT NBR 8953:2015 - Concreto para fins estruturais — Classificação pela massa específica, por grupos de resistência e consistência, seria capaz de ser utilizado em elementos estruturais com lançamento convencional, enquanto a dosagem com 0% de classe S220 em elementos estruturais esbeltos ou com alta densidade de armaduras.

No entanto, na avaliação do concreto endurecido, através do ensaio de resistência a compressão dos corpos de prova, foi verificado o oposto, conforme o acréscimo do resíduo na mistura do concreto, a resistência a compressão sofre redução nos ensaios de 7 e 28 dias de idade.

Portanto a substituição parcial do agregado miúdo pelo resíduo têxtil (poliéster), na produção do concreto apresentou uma redução significativa em sua resistência, sendo para a dosagem de 2,5% e 5% uma perca de resistência de 59% e 87%, respectivamente. A partir do ensaio a compressão, foi possível verificar que o comportamento das amostras não atingiu o necessário para se tornar um concreto estrutural de acordo com a tabela 01, no item 2.2.1, sendo viável apenas para uso não estrutural, com exceção da amostra com 5% de resíduo que se mostrou inadequada devido à sua resistência significativamente baixa.

Conclui-se desta forma, que a substituição do agregado com 2,5% de resíduo no agregado miúdo, se torna viável tecnicamente para uso não estruturais, como concreto magro, dessa maneira, ampliando métodos para evitar o descarte inadequado e promovendo o aproveitamento do resíduo têxtil na cadeia produtiva da construção civil.

Referências bibliográficas

ARTELASSÊ. **VOCÊ sabe o que é poliéster? Conheça as principais vantagens desse tecido e seus principais usos!**. 2022. Disponível em: https://blog.artelasse.com.br/o-que-e-poliester/. Acesso em: 24 set. de 2023.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5738: Concreto: Procedimento para moldagem e cura de corpos de prova**. Rio de Janeiro, p.4. 1994.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5739: Concreto: Ensaio de compressão de corpos de prova cilíndricos**. Rio de Janeiro, p.13. 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118: Projeto de estruturas de concreto: Procedimento**. Rio de Janeiro, p.256. 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7211: Agregado para concreto: Especificações.** Rio de Janeiro, p.15. 2005.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8953:** Concreto para fins estruturais — Classificação pela massa específica, por grupos de resistência e consistência. Rio de Janeiro, 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 12655: Concreto de cimento Portland – Preparo, controle, recebimento e aceitação: Procedimento**. Rio de Janeiro, p.29. 2009.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 15900: Água para amassamento do concreto: Requisitos**. Rio de Janeiro, p.15. 2009.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 12821: Preparação de concreto em laboratório - procedimento**. Rio de Janeiro, p.29. 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 16972: Agregados: Determinação da massa unitária e do índice de vazios**. Rio de Janeiro, p.10. 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR NM 52: Agregado miúdo: Determinação da massa específica e massa específica aparente**. Rio de Janeiro, p.12. 2009.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 12821: Preparação de concreto em laboratório - procedimento**. Rio de Janeiro, p.29. 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 15900: Água para amassamento do concreto: Requisitos**. Rio de Janeiro, p.15. 2009.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR NM 248: Agregados: Determinação da composição granulométrica**. Rio de Janeiro, p.13. 2003.

BONAFÉ, G. **Aditivos melhoram propriedades e aplicações do concreto.** 2016. Disponível em:https://www.aecweb.com.br/revista/materias/aditivos-melhoram-propriedades-e-aplicacoes-do-concreto/14428. Acesso em 13 de set. de 2023.

BUSTAMANTE, A. M.; BARUFFI, G.; WOLF, H. H.; PLESS, J. M.; BORBA, P. B.; SANTOS, C. C. dos. "Adição de resíduo têxtil-não estrutural". 2021. Artigo científico — Centro Universitário Católica de Santa Catarina.

CABALLERO, L. Entenda quais são os poluentes da indústria têxtil. **Ecycle**, 2022. Disponível em: https://www.ecycle.com.br/poluentes-da-industria-textil/. Acesso em: 6 de ago. de 2023.

DIAS, L. A.; ARNOLD, D. C. M.; BIRCK, F. B.; SILVA, A. T. Concreto reforçado com fibra de resíduo têxtil oriundo da produção de pneu. **Revista Tecnologia e Tendências**, Novo Hamburgo, v. 10, n. 1, p. 107-131, jan./jun. 2019.

GCP. **ADVA® CAST 525.** Disponível em: https://gcpat.com.br/pt-br/solutions/products/adva-cast-high-range-admixtures/adva-cast-525. Acesso em 09 de out. de 2023.

IFSC. **Como descartar roupas e tecidos de forma adequada?.** 2023. Disponível em: https://www.ifsc.edu.br/web/ifsc-verifica/w/como-descartar-roupas-e-tecidos-de-forma adequada-. Acesso em 07 de mai. de 2023.

LIMA, C. I. V.; COUTINHO, C. O. D.; AZEVEDO, G. G. C.; BARROS, T. Y. G.; TAUBER, T. C.; LIMA, S. F. Concreto e suas inovações. **Ciências exatas e tecnológicas**, Maceió, v. 1, n. 1, p. 31-40, mai. 2014.

MIASHITA, A. S. Avaliação da capacidade de substituição parcial de agregados graúdos por resíduos têxteis no concreto. 2017. 42 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Têxtil) — Universidade Tecnológica Federal do Paraná. Apucarana, 2017.

PEREIRA, C. **O que é Concreto Magro?.** 2018. Disponível em: https://www.escolaengenharia.com.br/concreto-

magro/#:~:text=O% 20concreto% 20magro% 20% C3% A9% 20um% 20tipo% 20de% 20concreto % 20sem% 20fun% C3% A7% C3% A3o,e% 20reduzida% 20quantidade% 20de% 20% C3% A1gua. Acesso em 17 de nov. de 2023.

RIBEIRO, C. C.; PINTO, J. D. S.; STARLING, T. **Materiais de Construção Civil**. 3ª ed. Belo Horizonte: UFMG, 2011.

SEBRAE. **Adote práticas para diminuir resíduos na produção de moda.** 2022. Disponível em: https://sebrae.com.br/sites/PortalSebrae/artigos/adote-praticas-para-diminuir-residuos-na-producao-de-moda,d37cae21e224f410VgnVCM1000004c00210aRCRD. Acesso em: 07 de mai. 2023.

TECNOSIL. O que é concreto e quais os principais tipos utilizados na construção?. Sd. Disponível em: https://www.tecnosilbr.com.br/o-que-e-concreto-e-quais-os-principais-tipos-utilizados-na-construção-2/. Acesso em: 17 de nov de 2023.